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external partons and its corresponding massless amplitude. For the form factor of a heavy

quark we present explicit results including the fixed-order expansion up to three loops in the
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applies to the computation of all singularities as well as the constant (mass-independent)

terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order

corrections.
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1. Introduction

Amplitudes for hard scattering processes in Quantum Chromodynamics (QCD) are of basic

importance both for theory and phenomenology and predictions for these matrix elements

have to include higher-order quantum corrections. They are mandatory for precision mea-

surements of Standard Model parameters and critical to the determination of backgrounds

for new physics phenomena. Many explicit computations of hard multi-parton processes

do not only provide us with a wealth of information but have also helped significantly

in understanding underlying principles such as factorization or the universal structure of

collinear and infrared singularities.

These singularities are particularly prominent for at least two reasons. First of all, the

independent knowledge of the universal limits when parton momenta become collinear or a

gluon momentum tends to zero serves as a very strong check on any complete calculation.

Secondly, the calculation of finite cross-sections in QCD beyond leading order has to com-

bine consistently squared matrix elements with different numbers of partons in the final

state. In any such formalism (see e.g. [1]) the individual contributions have to be suitably

integrated over the available phase space and are usually infrared divergent. At next-to-

leading order (NLO) in QCD the singular behavior of the corresponding amplitudes with

both massive and massless partons in the final state has been extensively studied [2 – 4].

Research beyond NLO in the past years has been primarily focused on the calculation

of massless amplitudes at next-to-next-to-leading order (NNLO), see for example [5 – 9]

and numerous references therein. The progress at NNLO and investigations of the singular
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behavior of amplitudes at higher loops [10] have significantly contributed to our under-

standing of their general structure from the view point of all-order resummations [11].

This in turn leads to predictions for the soft and collinear behavior of massless amplitudes

at any order based on a small number of perturbatively calculable anomalous dimensions.

For massive amplitudes however much less is known beyond NLO in QCD despite the

fact that NNLO precision predictions with massive quarks are clearly needed in view of the

data from present and the prospects of future high-energy colliders (see refs. [12 – 14] for

related progress). Prominent examples of such measurements are for instance the forward-

backward asymmetry AFB for inclusive heavy quark production in e+e−-annihilation [15,

16], and cross-sections for heavy flavor production and decays at the Tevatron and the

LHC (see e.g. ref. [17]).

The aim of this article is a first systematic investigation of the structure of massive

QCD amplitudes in singular limits beyond NLO. To that end, we extend the studies of

refs. [10, 11] to partonic scattering processes including the presence of massive particles.

The masses of the latter screen the divergences of the massless amplitudes and give rise to

large logarithmically enhanced contributions of Sudakov type [18], which dominate the high

energy behavior of the scattering amplitudes. It is precisely the structure of these large

logarithms together with soft singularities appearing as poles in (d − 4) in d dimensions,

that we wish to address here for a general non-Abelian SU(N)-gauge theory such as QCD.

Throughout the article we neglect power corrections in the parton masses m.

The outline of the paper is as follows. In section 2 we recall the general framework for

the factorization of n-parton amplitudes in QCD and discuss its modifications to incorpo-

rate massive partons. As a result we derive an extremely simple universal multiplicative

relation between a massive amplitude in the small mass limit and its massless version.

This is one main result of this paper. The corresponding multiplicative factor (which we

call Z) can be linked to the QCD form factor of massive and massless partons. Next in

section 3, we specifically address the resummation and exponentiation of the QCD form

factor for heavy quarks, which is our second main result. On this basis we provide in

section 4 all resummation coefficients and new fixed-order expansions of the massive form

factor up to three loops. For the resummation coefficients we observe striking relations

between the massless and the massive case. In section 4 we also present explicit results

for the universal multiplicative factor Z up to two loops and discuss its relation to the

perturbative fragmentation function of a heavy quark [19]. We argue that our formalism

represents the proper generalization of ref. [19] at the level of amplitudes. In section 5 we

demonstrate the predictive power of the factorization ansatz for QCD amplitudes with ex-

amples from 2 → n scattering processes, such as hadronic tt̄-production. There we discuss

the complete structure of the soft and collinear singularities including the logarithmically

enhanced terms to NNLO in perturbative QCD. We summarize in section 6 and present

some technical details in the appendix A.
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2. Factorization of QCD amplitudes

We are interested in a general 2 → n scattering processes of partons pi

p : p1(k1,m1, c1)+p2(k2,m2, c2) → p3(k3,m3, c3)+. . .+pn+2(kn+2,mn+2, cn+2) , (2.1)

where {pi} denotes the set of partons (of specific flavors) with associated momenta {ki},
masses {mi} and color quantum numbers {ci}. The latter are in the range 1 . . . N2 − 1 for

particles in the adjoint (gluons) and 1 . . . N for particles in the fundamental representation

(quarks) of a SU(N)-gauge theory.

The scattering amplitude M[p] for the process (2.1) is conveniently expressed in a basis

of color tensors (cI){ci}
. Following ref. [11] we write M[p] as

M[p]
{ci}

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
= M[p]

I

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
(cI){ci}

(2.2)

= |Mp〉 ,

where µ is the renormalization scale, Q the hard scale of the process typically related to the

center-of-mass energy, e.g. Q =
√

s with s = (k1 +k2)
2, and ǫ the parameter of dimensional

regularization, d = 4 − 2ǫ. The amplitude |Mp〉 is a vector in the space of color tensors

cI with summation over I being understood. We consider M[p] at fixed values of the

external parton momenta ki, thus k2
i = m2

i and especially k2
i = 0 for massless partons.

Any additional explicit dependence on the parton masses mi in eq. (2.2) is suppressed.

Let us start by recalling that on-shell amplitudes for massless partonic processes in

d = 4 − 2ǫ dimensions can be factorized into products of functions J [p]
0 , S [p]

0 and H[p].

These functions are called jet, soft and hard functions and are known to organize the

contributions of various momentum regions relevant to the structure of the singularities in

the scattering amplitude. Following refs. [10, 11] we can write

|Mp〉 = J [p]
0

(
Q2

µ2
, αs(µ

2), ǫ

)
S [p]

0

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
|Hp〉 . (2.3)

The short-distance dynamics of the hard scattering is described by Hp, which is infrared

finite. Analogous to the decomposition in eq. (2.2) |Hp〉 is a vector in the space of color

tensors cI . Coherent soft radiation arising from the overall color flow is summarized by

S [p]
0 , where we also use matrix notation suppressing the color indices. The function J [p]

0

depends only on the external partons and collects all collinearly sensitive contributions. It

is otherwise independent of the color flow.

Given the factorization formula (2.3) one can then organize the singularity structure

of any massless QCD amplitude. After the usual ultraviolet renormalization is performed,

these singularities generally consist of two types, soft and collinear. Being of infrared

origin, they are related to the emission of gluons with vanishing energy and to collinear

parton radiation off massless hard partons, respectively. In this way all soft and collinear

singularities in massless amplitudes are regularized and appear as explicit poles in ǫ as

indicated in eq. (2.2). Typically two powers of 1/ǫ are generated per loop.

– 3 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
1

When masses are introduced the picture described above gets modified. In QCD,

which has only massless gauge bosons, the soft singularities remain as single poles in ǫ

while some of the collinear singularities are now screened by the mass m of the heavy

fields. Nevertheless, in presence of masses, we speak of quasi-collinear singularities [2] that

exhibit logarithmic dependence on m. To be specific, in the present paper we will consider

the small mass limit of massive QCD amplitudes M[p] such as in eq. (2.2). Naturally, in

this limit we require that all masses in the amplitude are either zero or equal to a common

value m and much smaller than the characteristic hard scale Q of the reaction. Thus, in

the limit Q2 ≫ m2 we aim at organizing all poles in ǫ and all powers of lnk(m), k ≥ 0,

(including mass independent terms) from the underlying factorization principles.

From an alternative point of view however, the differences between a massless and a

massive amplitude for a given physical process can also be thought of as a mere change

in the regularization scheme. Here, the limit of small masses for any given amplitude

may simply be seen as an alternative to working in d-dimensions in order to regulate the

soft and/or collinear singularities. Of course, gauge invariance has to be retained. In this

interpretation parton masses act as formal regulators and massive amplitudes in the limit

m2 ≪ Q2 must share essential properties with the corresponding massless amplitudes. Such

arguments have been previously used in refs. [20 – 22] in the context of QED corrections to

the Bhabha process. Within QCD with nl light quarks and one heavy flavor, this requires

to properly account for the decoupling of the heavy quark. We will further elaborate on

this point below, in particular on the relevant aspects of the decoupling theorem [23].

Our goal is the generalization of the infrared factorization formula (2.3) of refs. [10, 11]

to the case of massive partons. To that end, we perform a similar factorization for the

amplitude M[p] into products of functions J [p], S [p] and H[p]. In the presence of a hard

scale Q we can then write for the partonic process (2.1)

|Mp〉 = J [p]

(
Q2

µ2
,
m2

i

µ2
, αs(µ

2), ǫ

)
S [p]

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
|Hp〉 , (2.4)

where all non-trivial mass dependence enters in the functions J [p] and S [p] and we neglect

in H[p] power suppressed terms in the parton masses m. The jet function now summarizes

all quasi-collinear contributions from the external partons. It is therefore of the form

J [p]

(
Q2

µ2
,
m2

i

µ2
, αs(µ

2), ǫ

)
=

n+2∏

i=1

J [i]

(
Q2

µ2
,
m2

i

µ2
, αs(µ

2), ǫ

)
, (2.5)

where J [i] denotes the jet function of each external parton pi.

We stress that the above factorization formula (2.4) is designed to correctly reproduce

the leading power in the hard scale Q. Moreover, as the similarity between eqs. (2.3)

and (2.4) suggests, the factorization is otherwise independent of details such as the partons

in reaction (2.1) being massless or massive. However, eq. (2.4) still contains ambiguities

related to the separation of finite terms in J [p], S [p] and H[p]. It also contains ambiguities

related to sub-leading soft terms in J [p] and S [p]. Following ref. [11] we fix this remaining

– 4 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
1

freedom completely by demanding that

J [i]

(
Q2

µ2
,
m2

i

µ2
, αs(µ

2), ǫ

)
=

(
F [i]

(
Q2

µ2
,
m2

i

µ2
, αs, ǫ

)) 1

2

, i = q, g , (2.6)

where the scalar function F [i] denotes the gauge invariant space-like form factor of a quark

or gluon to be discussed in detail in section 3 below. For the moment, suffice it to say that

the function F [q] is associated to the vertex γ ∗qq (or γ ∗qq̄), of a photon γ ∗ with virtuality

Q2, and q/q̄ an external quark / anti-quark of mass mq. Likewise, for a colored parton in

the adjoint SU(N)-representation, the function F [g] is either obtained from the effective

vertex φgg of a scalar Higgs and two massless gluons, or from the corresponding vertex

with two gluinos g̃ of mass mg̃.

The motivation for the choice made in eq. (2.6) above comes from the following con-

sideration. Firstly, it reproduces the collinear dynamics as desired and, moreover, provides

a specific prescription for the pure soft terms contained in the jet function. Secondly, it

guarantees that the jet factor J [p] remains process-independent, while all process-dependent

soft interference terms are entirely delegated to the soft function S [p]. We recall that the

role of parton masses is to simplify screen the collinear singularities. Since the soft and

hard functions S [p] and H[p] are insensitive to these collinear dynamics, being the same in

the massless or the massive case (provided Q2 ≫ m2), logarithmically enhanced contribu-

tions of the type lnk(m) are contained solely within J [p]. In other words, we require the

(massive) factorization formula (2.4) to be valid for any amplitude. Then it also holds for

the form factors F [i] in eq. (2.6) itself, since these are the simplest amplitudes to which

eq. (2.4) can be applied with S [ii→1] = 1 and H[ii→1] = 1, and this choice for J [p] is also

consistent with the corresponding massless case.

We also want to comment briefly on evolution and exponentiation. In eqs. (2.3)

and (2.4) we have suppressed any additional scale dependence, which together with the

renormalization group properties gives rise to evolution equations for J [p]
0 , S [p]

0 and J [p],

S [p]. The solution of those evolution equations leads to an all-order exponentiation in terms

of the corresponding anomalous dimensions, which is well known for massless partons, see

e.g. refs. [11, 24]. In the case of massive partons, the exponentiation of the jet function J [i]

(the form factor F [i], respectively) is discussed in detail in section 3, while we postpone

the soft function S [p] and its solution as a path-ordered exponential until section 5.

Finally, the factorization formula (2.4) along with our choice (2.6) for the jet function

lends itself to an even more suggestive form for practical applications, namely, as a direct

relation between the massless and the massive amplitude, M[p],(m=0) and M[p],(m), for any

given physical process. To that end, we exploit the full predictive power of eq. (2.4) and

derive the remarkably simple and suggestive relation

M[p],(m)

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
= (2.7)

∏

i∈ {all legs}

(
Z

(m|0)
[i]

(
m2

µ2
, αs(µ

2), ǫ

)) 1

2

× M[p],(m=0)

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
,
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ll hl lh hh

Figure 1: Feynman diagrams contributing to the vertex γ ∗qq as examples for the flavor classes ll,

hl, lh and hh discussed in the text. Curly lines denote gluons, double straight lines quarks of mass

m and single straight lines massless quarks.

which is the first main result of this paper.

We have suppressed the color indices in eq. (2.7). As we see, the massless amplitude

M[p],(m=0) and its massive analogue M[p],(m) in the small mass limit m2 ≪ Q2 are multi-

plicatively related by a universal function Z(m|0). This result is consistent with ref. [2] (see

section 5 for the detailed comparison). The function Z(m|0) is process independent and can

be viewed as a sort of renormalization constant (or rather a constant relating two different

regularization schemes). This relation can be used to predict any massive amplitude from

the known massless one, the latter being much easier to compute in practice. Moreover,

eq. (2.7) includes not only the singular terms in the massive amplitude but extends even

to the constant contributions (i.e. the mass-independent terms).

With eq. (2.6) defining the jet function, the function Z(m|0) is given in terms of the

respective form factors,

Z
(m|0)
[i]

(
m2

µ2
, αs, ǫ

)
= F [i]

(
Q2

µ2
,
m2

µ2
, αs, ǫ

)(
F [i]

(
Q2

µ2
, 0, αs, ǫ

))−1

, (2.8)

where the index i denotes the (massive) parton and αs is evaluated at the scale µ2. Eq. (2.8)

explicitly demonstrates the process-independence of the factor Z(m|0). While both the

massive and the massless form factors are functions of the process-dependent scale Q, this

dependence cancels in their ratio leaving in the factor Z(m|0) only the ratio of process-

independent scales µ2/m2.

Although eq. (2.8) is valid in a more general setting, and in particular through any

perturbative order, we will restrict in the following our attention to QCD amplitudes and

in particular to those with massive quarks. For this case we will present explicit results for

Z
(m|0)
[q] up to two loops in section 4. Applications of eq. (2.7) will be presented in section 5.

Eqs. (2.7) and (2.8) are in addition subject to the following clarifications and qualifi-

cations. First of all, the form factors entering in eq. (2.8) for Z
(m|0)
[q] are to be understood

as being the form factors in a theory with either nl +1 massless quark flavors or nl massless

flavors and one heavy quark, respectively. In both cases we have the same total number

of flavors nf = nl + 1. Secondly, our approach of relating the large logarithms in m to

quasi-collinear momentum regions requires external massive legs. More precisely, we may

– 6 –
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define flavor classes, according to the total number of heavy quark lines in an amplitude at

a given order of perturbation theory. In addition, the flavor classes distinguish for a given

number of massive lines whether the latter represent external legs or form closed internal

loops. For the form factor up to two loops, we illustrate the various cases ll, hl, lh and

hh in figure 1. At tree level and one loop, we only have the pair of classes ll and hl, while

from two loops onwards we also have the pair lh and hh. Both these pairs give rise to

separate relations in eq. (2.8). Beyond two loops, yet new flavor classes can appear, see

e.g. ref. [25]. In fact a related discussion of this issue has already emerged in the literature

during the calculation of the NLO QCD corrections to the three jet rate with massive

quarks in electron-positron annihilation, e+e− → qq̄X, see e.g. refs. [26, 27]. It is also clear

how to generalize the definition of flavor classes to other types of colored heavy particles

such as gluinos.

Let us finish this section by pointing out another property of eq. (2.7). It is a standard

textbook knowledge that the two infrared regularizations of any one-loop QCD amplitude,

either with a quark mass or dimensionally, are related to each other as follows

ln(m) → 1

ǫ
+ finite terms in ǫ . (2.9)

Based on eqs. (2.4) and (2.7), we conclude in this paper that the proper generalization of

eq. (2.9) beyond one loop is in the sense of process independent factorization. The factor

Z(m|0) in eq. (2.8) is invertible and defines the building block of proportionality to all orders

in the strong coupling.

3. The Sudakov form factor in QCD

In the previous section we have presented a factorization that describes the singularity

structure of QCD amplitudes both in the massless case and in the limit of small masses

m2 ≪ Q2. This factorization is valid through any perturbative order and we have em-

phasized the central role of the form factor F [i], which specifically includes the QCD cor-

rections. Therefore, in this section we want to focus on F [i] and address the issue of its

exponentiation.

To be precise we restrict the discussion here to F [q] for the vertex γ ∗qq̄ of a photon and

an external quark-anti-quark pair, i.e. to massive partons in the fundamental representation

of the SU(N)-gauge group. Furthermore we confine ourselves to the case of one (heavy)

external quark line and no internal massive loops, which means we consider the flavor

classes ll and hl (see figure 1). We briefly comment on classes lh and hh at the end of this

section. The gluon form factor F [g] for all-massless partons in the adjoint representation

on the other hand, which describes the vertex φgg of a scalar Higgs and two gluons is well

known, see e.g. ref. [28]. Also the necessary modifications to account for massive partons

in the adjoint representation such as gluinos in supersymmetric QCD have been worked

out to one loop in ref. [2].

– 7 –
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Given a photon of virtuality Q2 (we take space-like q2 = −Q2 < 0 throughout this

section) the general expression for the vertex function Γµ reads

Γµ(k1, k2) = ieq ū(k1)

(
γµ F [q]

1 (Q2,m2, αs) +
1

2m
σµν qν F [q]

2 (Q2,m2, αs)

)
u(k2) . (3.1)

Here the external quark (anti-quark) of momentum k1 (k2) is on-shell with m denoting its

mass and eq its charge, thus k2
1 = m2 (and k2

2 = m2). The scalar functions F [q]
1 and F [q]

2 on

the right-hand side are the space-like quark form factors, which can be calculated order by

order in the strong coupling constant αs. Results for the perturbative QCD corrections to

F [q]
1 in eq. (3.1) are known through three loops in the massless on-shell case [29 – 31, 28],

while the case of on-shell heavy quarks through two loops has been considered in series

of papers [32 – 34]. F [q]
1 and F [q]

2 are gauge invariant, but divergent and in dimensional

regularization with d = 4−2ǫ these divergences show up as poles ǫ−k. As we are concerned

with the small mass limit m2 ≪ Q2, we will in the following mainly consider the pure

vector-like form factor F [q]
1 , since F [q]

2 vanishes for massless quarks. In the remainder we

drop all indices and define F ≡ F [q]
1 .

The universality of soft and collinear radiation leads on quite general grounds to an

exponentiation of the respective singular terms in the form factor, be it poles in ǫ or large

logarithms ln(m) of Sudakov type. This has been well studied in the literature in various

approaches [35 – 39]. Moreover, in the massless case explicit formulae have been given up

to the next-to-next-to-next-to-leading contributions [30, 40, 41]. However, to the best of

our knowledge, an equally valid exponentiated representation for the massive form factor

in dimensional regularization, which holds beyond the leading contributions has still been

lacking. In this paper we present it for the first time. In doing so we use two complementary

derivations based on evolution equations [35] and on inclusive partonic cross-sections [39].

Let us start with the former method and recall the evolution equations for the form

factor [35]

− µ2 ∂

∂µ2
lnF

(
Q2

µ2
,
m2

µ2
, αs, ǫ

)
=

1

2
K

(
m2

µ2
, αs, ǫ

)
+

1

2
G

(
Q2

µ2
, αs, ǫ

)
. (3.2)

The key input [42] from QCD factorization are the dependence on the hard scale Q which

rests entirely in the function G and, to logarithmic accuracy, the separation of the mass

dependence in the function K. Both functions, G and K, are subject to renormalization

group equations [35, 42],

µ2 d

dµ2
G

(
Q2

µ2
, αs, ǫ

)
= − lim

m→0
µ2 d

dµ2
K

(
m2

µ2
, αs, ǫ

)
= A(αs) , (3.3)

where we assume αs = αs(µ
2). Under renormalization group flow both G and K are

governed by the same anomalous dimension A, because their sum is an invariant of the

renormalization group. The anomalous dimension A is well known for instance as the

coefficient of the 1/(1−x)+-contribution to the diagonal splitting functions or alternatively

as the anomalous dimension of a Wilson line with a cusp [43]. Its power expansion in the

– 8 –
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strong coupling is currently known up to three loops [44, 45] and we use the convention

(also employed for all other expansions in αs throughout this article)

A(αs) =
∞∑

i=1

(αs

4π

)i
Ai ≡

∞∑

i=1

(as)
i Ai , (3.4)

where we have introduced the shorthand notation as(µ
2) ≡ αs(µ

2)/(4π) and similarly for

the d-dimensional coupling to be defined below. For later reference, we also mention that

we choose the MS-scheme for the coupling constant renormalization. The heavy mass m on

the other hand is always taken to be the pole mass, thus the renormalization of m imposes

the on-shell condition. We explicitly relate the bare (unrenormalized) coupling αb
s to the

renormalized coupling αs by

αb
s Sǫ = Zαs

αs , (3.5)

where the renormalization constant Zαs
in the MS-scheme is given by

Zαs
= 1 − β0

ǫ
as +

(
β2

0

ǫ2
− 1

2

β1

ǫ

)
a 2

s −
(

β3
0

ǫ3
− 7

6

β1β0

ǫ2
+

1

3

β2

ǫ

)
a 3

s + . . . , (3.6)

and the bare expansion parameter is normalized as ab
s = αb

s /(4π) . For simplicity, we

always set the ubiquitous factor Sǫ = (4π)ǫ exp(−ǫγE) = 1.

In eq. (3.3) all dependence on the infrared sector of the theory, i.e. the structure of the

singularities is described by the function K. The function G, on the other hand, includes

all dependence on the hard scale Q2 and is finite for ǫ → 0. It is straight forward to solve

the evolution equation (3.3) for G. Integration gives

G

(
Q2

µ2
, αs, ǫ

)
= − G

(
ā

(
Q2, ǫ

))
−

Q2/µ2∫

0

dλ

λ
A(ā(λµ2, ǫ)) , (3.7)

with the boundary condition G(ā) to be derived by matching to fixed-order results for the

form factor.

Working in d-dimensions the solution for G in eq. (3.7) naturally depends on the d-

dimensional running coupling ā(Q2, ǫ). The latter can be expressed as a power series in the

usual strong coupling constant αs(µ
2) evaluated at a scale µ2. This relation is now known

through NNLO accuracy [30],
(

k2

µ2

)ǫ

ā(k2, ǫ) = (3.8)

as

X

{
1 − ǫ

β1

β2
0

ln X

X

}
− a 2

s

X2

{
β1

β0
(ln X + Y )

}
+

a 3
s

X3

{
β2

1

β2
0

3

2
ln2 X

(
1 + Y +

1

4
Y 2

)

+
β2

β0
ln X

(
1

6
(3 + Y )(1 − X) − 1 − Y − 1

3
Y 2

)}
+ O

(
a 4

s

)
,

which is consistent with the β-function in d-dimensions [41, 46]. Here we have used as =

as(µ
2), the obvious boundary condition ā(µ2, ǫ) = as(µ

2) and the abbreviations

X = 1 − as
β0

ǫ

((
k2

µ2

)−ǫ

− 1

)
, Y =

ǫ(1 − X)

asβ0
. (3.9)
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The differential equation for K in eq. (3.3) is similar to the one for the function G with

the obvious difference that the scale Q is replaced by the mass m. The solution reads:

K

(
m2

µ2
, αs, ǫ

)
= − K

(
ā

(
m2, ǫ

))
+

m2/µ2∫

0

dλ

λ
A(ā(λµ2, ǫ)) . (3.10)

Combining the above results we obtain the solution of the evolution equation (3.2) for

the form factor F ,

lnF
(

Q2

µ2
,
m2

µ2
, αs, ǫ

)
=

1

2

Q2/µ2∫

0

dξ

ξ

{
G(ā(ξµ2, ǫ)) +

ξ∫

0

dλ

λ
A(ā(λµ2, ǫ))

}

−1

2

m2/µ2∫

0

dξ

ξ

{
K(ā(ξµ2, ǫ)) −

ξ∫

0

dλ

λ
A(ā(λµ2, ǫ))

}
,

which satisfies the boundary condition F(0, 0, αs, ǫ) = 1 and eq. (3.2). Finally, we rearrange

the above result as,

lnF
(

Q2

µ2
,
m2

µ2
, αs, ǫ

)
= (3.11)

−1

2

Q2/µ2∫

0

dξ

ξ

{
G(ā(ξµ2, ǫ)) + K(ā(ξµ2m2/Q2, ǫ)) +

ξ∫

ξm2/Q2

dλ

λ
A(ā(λµ2, ǫ))

}
.

Upon expansion of the d-dimensional coupling according to eq. (3.8), lnF develops

per power of as double logarithms of Q2/m2 and single poles in ǫ, which are generated

by the two integrations. To be specific, the single poles are governed by the function K

in eq. (3.11) and are generated only by the outer ξ-integration. On the other hand, the

inner λ-integration over A gives only rise to logarithms (as long as the infrared cutoff is

set by the heavy quark mass). All quantities in eq. (3.11) are expressed in terms of the

d-dimensional coupling ā. In this way all integrations are regulated and no singularities

other than poles in ǫ arise.

Finally, after multiplying with a hard function C, we are in a position to write down

the exponential for the complete massive form factor, which is our second main result,

F
(

Q2

µ2
,
m2

µ2
, as(µ

2), ǫ

)
= C(ā(µ2, ǫ), ǫ)× (3.12)

exp


−

1

2

Q2/µ2∫

0

dξ

ξ

{
G(ā(ξµ2, ǫ)) + K(ā(ξµ2m2/Q2, ǫ)) +

ξ∫

ξm2/Q2

dλ

λ
A(ā(λµ2, ǫ))

}
 ,

with all quantities on the right hand side being functions of ā in d-dimensions. Besides the

known anomalous dimension A [44, 45] all other functions G, K and C can be determined in
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a finite-order expansion. This will be accomplished in section 4. Before doing so however,

there is one more feature of eq. (3.12) which deserves some comment.

As is well known, for renormalization schemes used in QCD based on dimensional

regularization in the MS-scheme, the Appelquist-Carazzone decoupling theorem [23] does

not hold true in its naive sense. In a theory with nl light and nh heavy flavors (thus nf = nl+

nh for the total number of flavors) the contributions of a heavy quark of mass m to the Green

functions of gluons and light quarks expressed in terms of the renormalized parameters of

the full theory do not exhibit the expected 1/m suppression. The reason here is that the

β-function governing the running of the strong coupling constant αs does not depend on

any masses. Neither do the anomalous dimensions describing the renormalization scale

dependence of all other parameters of the theory. Rather, they exhibit discontinuities at

the flavor thresholds, which are controlled by so-called decoupling constants.

In the exponential expression eq. (3.12) for the form factor we have used the standard

MS coupling running with nl light flavors. In order to compare eq. (3.12) or rather its

expanded version to the fixed-order calculations [32] of the massive form factor, which also

employ the MS-scheme, but a running coupling with a total number of flavors nf = nl + 1,

one has to apply the decoupling relations. The necessary decoupling constant for αs at

flavor thresholds is known to O(α3
s) [47 – 49] (see also ref. [50]). To relate the two results,

that is the expansion of eq. (3.12) on the one hand and the perturbative QCD corrections

for the form factor through two-loops [32] on the other, we use the following relation for

as,

a
(n

l
)

s = a
(n

f
)

s − 2

3
Lµ,ǫ

(
a

(n
f
)

s

) 2

+

{(
4

9
− ǫ

3
(5CA + 3CF )

)
L2

µ,ǫ (3.13)

− 2

3
(5CA + 3CF )Lµ,ǫ +

16

9
CA − 15

2
CF

}(
a

(n
f
)

s

) 3

+ O
((

a
(n

f
)

s

) 4)
,

where a
(n

l
)

s is the standard MS coupling for nl quark flavors expanded in terms of a
(n

f
)

s for

nf = nl + 1 flavors, both evaluated at the scale µ2. Eq. (3.13) uses the pole-mass m. The

abbreviation Lµ,ǫ denotes

Lµ,ǫ =
1

ǫ

((
m2

µ2

)−ǫ

− 1

)
. (3.14)

Eq. (3.13) is correct to NNLO and consistent with the standard β-function in d-dimensions

for all terms proportional to Lµ,ǫ. For the constant terms at a3
s (i.e. those independent of

Lµ,ǫ) it is accurate up to terms of order ǫ. Eq. (3.13) is to be inserted on the right hand

side of eq. (3.8) to decouple the heavy quark in the d-dimensional coupling. Beyond one

loop this generates in particular the correct scale dependence to the accuracy required in

section 4.

Before moving on, we would like to discuss the exponentiation of the massive form

factor in eq. (3.11) from a different perspective. As announced above, our starting point

here is the observation that in sufficiently inclusive cross-sections, infrared singularities

cancel between real and virtual diagrams. A suitable example for our purpose is the

partonic cross-section of inclusive deep-inelastic scattering (DIS) of a massive quark. The
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purely virtual contributions to this partonic observable coincide with the squared massive

space-like form factor.

To extract the form factor, we first derive the all-order exponentiation of the soft sin-

gularities of the cross-section for the scattering of a massive quark q off a virtual boson V ∗,

i.e. q+V ∗ → q+X. To that end we follow the by-now standard methods for exponentiating

inclusive partonic cross-sections in Mellin N -space, see e.g. refs. [37, 39, 51 – 53]. Working

in the eikonal approximation we obtain

ln(σ(N,αs)) =

1∫

0

dx

(
xN−1 − 1

1 − x

)
g(1 − x, αs) , (3.15)

where the function g contains the powers of logarithms ln(1−x) at higher orders of αs and

x is a kinematical variable related to the Bjorken variable xB , and to be specified below.

Secondly, we use the fact that the purely virtual diagrams exhibit a simple x-

dependence proportional to δ(1 − x), i.e. in N -space they contribute an N -independent

factor. Thus, working in the eikonal approximation one can identify the contribution from

the squared form factor (to all orders in the strong coupling) with the term ”−1” in the

factor (xN−1 −1) in eq. (3.15). The complementary, N -dependent factor is entirely related

to real emission diagrams. This way one can identify the logarithm of the form factor with

the function

− 1

2

1∫

0

dz

z
g(z, αs) , (3.16)

where z = 1 − x.

As it stands eq. (3.16) is not well defined. The reason is that it contains unregulated

soft singularities. Their appearance is not unexpected, since the factor (xN−1 − 1) in

eq. (3.15) is constructed such that it ensures the cancellation between the soft singularities

from the real and virtual corrections. Moreover, it is precisely this cancellation that leads to

the appearance of the large distributions [lnk(1−x)/(1−x)]+ (or large logarithms ln(N) in

Mellin space) in the function g. Therefore, if one removes the real emission contributions

in eq. (3.15), one can no longer rely on the delicate balance between real and virtual

contributions to regularize the soft singularities. Clearly an alternative regularization of

the latter is needed to render eq. (3.16) meaningful.

Since in this paper we are interested in regularizing the soft divergences in the mas-

sive form factor (or in any other amplitude) dimensionally, and in line with our previous

discussion, we modify eq. (3.16) by replacing the usual coupling αs with the d-dimensional

one ā as defined in eq. (3.8),

ln(F(αs)) = −1

2

1∫

0

dz

z
g(z, ā) . (3.17)

We stress that the function g in eq. (3.17) is the same one that appears in the cross-section

in eq. (3.15). The effect of the d-dimensional coupling is rather transparent, as it supplies
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additional powers of the factor z−ǫ, see e.g. the left hand side of eq. (3.8), which allows to

regulate the z-integration in eq. (3.17) in the limit z → 0.

For the derivation of the required hard cross-section for the process q+V ∗ → q+X we

directly build on previous work on the exponentiation of massive cross-sections at next-to-

leading logarithmic accuracy [54, 55], where the light quark initiated process ql+V ∗ → q+X

was studied. Since in this work we are interested in the corresponding process initiated by

heavy quarks, q + V ∗ → q + X, one has to modify the analysis of ref. [54]. One possible

option is to repeat the considerations of that reference keeping a non-vanishing mass for the

initial state quark. However, a much simpler alternative is to express the coefficient function

for the q-initiated process as a convolution of a perturbative distribution function for the

initial-state heavy quark q and the coefficient function for the process ql +V ∗ → q+X both

evaluated at a common factorization scale µF . Since we are interested only in contributions

that are enhanced in the soft limit and suppress power corrections with the quark mass m,

only the q → q component of this distribution function is required. Moreover in the soft

limit this function with space-like kinematics coincides with its time-like counterpart (see

e.g. ref. [56]). All components of the time-like perturbative fragmentation function D are

known through two loops and can be found in refs. [57, 58].

The exponential structure in the soft limit of the perturbative fragmentation function

D of a heavy quark [19] is well understood [56, 59, 60]. In Mellin-N space we have

ln(D(N)) =

1∫

0

dx
xN−1 − 1

1 − x

{
H

(
αs((1 − x)2m2)

)
+

µ2

F∫

(1−x)2m2

dk2

k2
A

(
αs(k

2)
)
}

, (3.18)

where the anomalous dimension A is the same as the one appearing in eq. (3.4) while H is

a new function.

The exponentiation of the coefficient function for the process ql + V ∗ → q + X was

clarified in ref. [54]. With the same anomalous dimension A and a new function S the

result reads,

ln(σql→q(N)) =

1∫

0

dx
xN−1 − 1

1 − x

{
S

(
αs((1 − x)2M2)

)
+

(1−x)2M2∫

µ2

F

dk2

k2
A

(
αs(k

2)
)
}

, (3.19)

where in the limit m2 ≪ Q2 the scale M equals M2 = Q4/m2.

Let us briefly recall a few basic facts [54] about the derivation of eq. (3.19). The

variable x, 0 ≤ x ≤ 1, is the rescaled Bjorken variable x = (1 + m2/Q2)xB . The upper

limit of the k2-integration follows from kinematics and in the center-of-mass frame it is

determined from the light quark energy E : k2 ≤ 4E2(1 − x)2. Moreover one has

2E ≃ Q2 + m2

√
(1 − x)Q2 + m2

. (3.20)

Since we are working in the soft limit (1 − x) → 0, it is obvious that in the massive case

eq. (3.20) leads exactly to the scale M in eq. (3.19), while for m = 0 it reduces to the well

known expression of the massless case [39].
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Convoluting eqs. (3.18) and (3.19) we obtain the desired coefficient function for the

sub-process q + V ∗ → q + X in the soft limit. One can see that the dependence on

the factorization scale drops out as it should. Following the procedure outlined around

eqs. (3.16), (3.17) above, we finally obtain the Sudakov exponent for the massive form

factor:

∆F = −1

2

1∫

0

dz

z

{
S

(
ā(z2M2, ǫ)

)
+ H

(
ā(z2m2, ǫ)

)
+

z2M2∫

z2m2

dk2

k2
A

(
ā(k2, ǫ)

)
}

. (3.21)

The complete form factor is obtained by multiplying the above exponent with a hard

function HF :

F
(

Q2

µ2
,
m2

µ2
, αs, ǫ

)
= HF (Q2,m2, ā(µ2, ǫ), ǫ) exp{∆F} . (3.22)

Here all functions A, H, S and HF have perturbative expansions analogous to eq. (3.4).

They can be obtained to a given order in αs by matching for instance to the full calculation

for F . In addition, independent information on H and S arises also with the help of

eqs. (3.18) or (3.19) from the calculation of the perturbative fragmentation function D or

the hard partonic light-to-heavy DIS cross-section σql→q.

The hard function HF has an expansion in ǫ but is finite in the limit ǫ → 0, since all

soft poles are collected in the exponent ∆F . To completely define the hard function HF one

has again to specify the definition of the coupling αs appearing in eqs. (3.21) and (3.22).

This is the usual MS coupling defined in eq. (3.5) but running only with the number of

light flavors nl. The same number of flavors appears also in the anomalous dimensions,

see e.g. refs. [56, 57]. Thus, in order to compare eq. (3.22) to the fixed-order calculation

available in, say ref. [32], with a coupling constant αs for nf = nl +1 flavors, we again have

to apply the decoupling relations [23, 47 – 49] in the form of eq. (3.13).

A comparison to the exact two-loop calculation of the vector form factor [32] shows

that eq. (3.22) correctly predicts all soft terms ∼ 1/ǫk , k ≥ 1 including their logarithmic

mass dependence, while it does not control the powers of ∼ lnk(m) at order ǫ0 which are of

collinear origin. From the viewpoint of the exponentiation of soft singularities these latter

logarithms must be included in the hard function HF .

However, at the same time one expects that all pure collinear logarithms exponentiate

as well. This feature is unrelated to the soft-gluon exponentiation discussed above but

rather to the standard parton evolution equations (DGLAP). Here we recall the analysis

of ref. [39] where the effect of collinear radiation in the outgoing jet results in modifica-

tions of the naive eikonal exponentiation. The additional collinear contributions in the

final-state are taken into account by constructing a DGLAP-like evolution equation for

the corresponding jet function. The latter, in turn, contributes to the well known DIS

anomalous dimension B [37, 39]. In the massive case the virtuality of the final state is of

order (1 − x)Q2 + m2 and does not vanish in the soft limit which brings additional ln(m)

terms. In this paper we will not elaborate on that point further, as all purely collinear log-

arithmic terms can be read off from the exponentiated expressions of the form factor given
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in eq. (3.12). This picture is consistent with fixed-order calculations of the perturbative

fragmentation function.1 Indeed, one can easily verify that the logarithmic contributions in

the one-loop form factor F1 for ǫ0 and ǫ coincide with the pure virtual contributions to the

one-loop fragmentation function D1, see for instance eq. (45) of ref. [57]. Unfortunately,

the two-loop virtual contributions cannot be extracted from ref. [57]. In the next section

we will elaborate on this relation.

Before completing this section on the massive form factor, we would like to address

the question of its massless limit. Reconsidering eq. (3.11), i.e. the exponent of eq. (3.12),

it is obvious that the limit m → 0 is smooth. The contribution from the infrared function

K vanishes for m → 0, while the contribution from the G function is similar to the one in

the well known massless case [40, 41]. The counterterm K in refs. [40, 41] can be expressed

as

K(0, αs, ǫ) =

1∫

0

dx

x
A(ā(xµ2, ǫ)) , (3.23)

which is consistent with eqs. (3.11) and (3.12) after changing the integration boundaries

according to refs. [40, 41]. Moreover, the function G in the massive case should be related

to the G function of the massless case up to possibly constant difference. As we will

demonstrate to two loops in the next section, the two functions in fact do coincide to all

known orders in ǫ, i.e. the massless limit of the massive result eq. (3.12) requires setting

both m = 0 and C = 1.

Therefore, the resummed quark form factor reads in the massless case

lnF
(

Q2

µ2
, 0, αs, ǫ

)
= −1

2

Q2/µ2∫

0

dξ

ξ

{
B(ā(ξµ2, ǫ)) + h(ā(ξµ2, ǫ)) +

ξ∫

0

dλ

λ
A(ā(λµ2, ǫ))

}
,

with the boundary condition F(0, 0, αs, ǫ) = 1. Now lnF develops double poles in ǫ per

power of as from the λ- and the ξ-integration over the anomalous dimension A. In eq. (3.24)

we have identified the initial condition G (ā) of eq. (3.7) with the sum of two functions B+h.

The physical interpretation of the new functions B and h, which also have expansions in

the d-dimensional coupling, follows nicely from the previous considerations of inclusive DIS

scattering. Following ref. [39] one can identify the function B with the coefficient governing

the evolution of those large logarithms ln(N) in inclusive DIS scattering associated with the

final state jet function. This has recently also been pointed out in ref. [61]. The function B

is known to three-loop accuracy [53] from explicit DIS calculations [25, 44, 45, 62]. The new

contribution h on the other hand can be thought of as the massless limit of the function

H in eq. (3.21). To determine h in a perturbative expansion we match the above exponent

to the known three-loop result for the massless form factor [30] and we have checked that

the α4
s prediction based on eq. (3.24) agrees with previous results in the literature [30].

It is interesting to note that unlike the standard expression for the massless form factor

1We would like to thank S. Catani for an interesting discussion on this point.
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as given e.g. in refs. [30, 40, 41], the result we propose in this paper is comprised of well

defined integrals. Moreover, we can directly interpret the respective parts as the three-loop

contributions of the form factor to the DIS coefficient functions and the splitting functions

respectively.

Finally let us briefly comment again on the various flavor classes, since the previous

discussion was entirely focused on the flavor classes ll and hl. Beyond one loop we have

for instance the contributions to F from the class hh. These contributions are finite after

performing the ultraviolet renormalization, but they still do contain Sudakov logarithms of

the type lnk(Q2/m2). In fact, up to two loops all remaining large logarithms lnk(Q2/m2)

in the heavy quark form factor not accounted for by eq. (3.12) are entirely related to the

self-energy contributions of a heavy quark, i.e. the diagram denoted with hh in figure 1.

It is well known [63, 64] that these contributions obey Sudakov exponentiation similar to

eq. (3.12), although with different integration boundaries and evaluated at the matching

scale µ2 = m2. Thus, we can introduce the function Fhh which exponentiates the logarithms

in the flavor class hh,

lnFhh(Q
2,m2, ā(µ2, ǫ), ǫ) = (3.24)

−1

2

Q2/µ2∫

m2/µ2

dξ

ξ

{
G′(ā(ξµ2, ǫ)) + K(ā(ξµ2m2/Q2, ǫ)) +

ξ∫

m2/µ2

dλ

λ
A(ā(λµ2, ǫ))

}∣∣∣∣∣∣∣
n
f
=n

h

.

Eq. (3.24) is to be evaluated at the scale µ2 = m2 and to be restricted to the purely

fermionic contributions with the heavy quark pair coupling to the external boson and one

additional virtual heavy quark line. Eq. (3.24) contains the same functions A and K as

eq. (3.12), but a different function G′. As a matter of fact, its structure follows directly from

integrating eqs. (3.2) and (3.7) under the condition that the infrared region is cut off at

the scale m2. See e.g. refs. [63, 64] for details on the finite-order expansion of exponentials

like eq. (3.24). We address this issue in future work.

4. Fixed-order expansions and resummation coefficients

In this section we will give the finite-order expansions for the various quantities, in partic-

ular for the factor Z(m|0) of eq. (2.8) and the form factor F of eq. (3.12). All formulae in

this section use the MS-scheme for the coupling constant, while the heavy mass is always

taken to be the pole mass (on-shell scheme). In addition, as in the previous sections, we

limit ourselves to the contributions in the flavor classes ll and hl. Throughout this section

nf denotes the number of massless flavors.

4.1 The factor Z(m|0)

Let us start with the perturbative QCD expansion of eq. (2.8) for the factor Z(m|0) which

we defined as the ratio of the massive and the massless form factors for a given parton and
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which we write as an expansion in terms of the renormalized coupling as(µ
2) ≡ αs(µ

2)/(4π):

Z
(m|0)
[i]

(
m2

µ2
, αs, ǫ

)
= 1 +

∞∑

j=1

(as)
j Z

(j)
[i] . (4.1)

The quark form factor in massless QCD is known to three loops [30, 28], while the

form factor of a massive quark is known for arbitrary values of the quark mass through

two loops [32]. The expansion coefficients (4.1) in the case of a (heavy) quark q read

Z
(1)
[q] = CF

{
2

ǫ2
+

2Lµ+1

ǫ
+L2

µ+Lµ+4+ζ2+ǫ

(
L3

µ

3
+

L2
µ

2
+(4+ζ2)Lµ+8+

ζ2

2
− 2

3
ζ3

)

+ǫ2

(
L4

µ

12
+

L3
µ

6
+

(
2 +

ζ2

2

)
L2

µ +

(
8 +

ζ2

2
− 2

3
ζ3

)
Lµ + 16 + 2ζ2 −

ζ3

3
+

9

20
ζ2

2

)}

+O(ǫ3) , (4.2)

Z
(2)
[q] = CF

2 2

ǫ4
+

1

ǫ3

{
CF

2(4Lµ + 2) − 11

2
CF CA + nfCF

}
(4.3)

+
1

ǫ2

{
CF

2

(
4L2

µ+4Lµ+
17

2
+2ζ2

)
+CF CA

(
−11

3
Lµ+

17

9
−ζ2

)
+nfCF

(
2

3
Lµ−

2

9

)}

+
1

ǫ

{
CF

2

(
8

3
L3

µ + 4L2
µ + (17 + 4ζ2)Lµ +

83

4
− 4ζ2 +

32

3
ζ3

)

+CF CA

((
67

9
− 2ζ2

)
Lµ +

373

108
+

15

2
ζ2 − 15ζ3

)
+ nfCF

(
−10

9
Lµ − 5

54
− ζ2

)}

+CF
2

(
4

3
L4

µ +
8

3
L3

µ+(17+4ζ2)L
2
µ+

(
83

2
−8ζ2+

64

3
ζ3

)
Lµ+

561

8
+

61

2
ζ2−

22

3
ζ3

−48 ln 2ζ2−
77

5
ζ2

2

)
+CF CA

(
11

9
L3

µ+

(
167

18
−2ζ2

)
L2

µ+

(
1165

54
+

56

3
ζ2−30ζ3

)
Lµ

+
12877

648
+

323

18
ζ2 +

89

9
ζ3 + 24 ln 2ζ2 −

47

5
ζ2

2

)

+nfCF

(
−2

9
L3

µ − 13

9
L2

µ +

(
−77

27
− 8

3
ζ2

)
Lµ − 1541

324
− 37

9
ζ2 −

26

9
ζ3

)
+ O(ǫ) ,

where two-loop contributions arising from virtual heavy flavor lines are omitted (see fig-

ure 1) and

Lµ = ln

(
µ2

m2

)
. (4.4)

In presence of heavy flavors the form factor of a massless quark gets mass-dependent

contributions at two loops from the diagram lh in figure 1. We will not consider such

two-loop contributions in this paper. Unlike the massless quark, however, the gluon form

factor receives mass-dependent corrections starting from one loop. These have their origin

in the one-loop heavy flavor insertion in the tree-level gluon form factor. It is clear that for

the gluon form factor the classification of figure 1 has to be suitably adapted by counting

the number of (internal) heavy lines. It is easy to work out the one-loop result for the
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gluon Z(m|0)-factor in eq. (4.1) (see the appendix for the all-orders in ǫ result) and it reads:

Z
(1)
[g]

= nh

{
− 2

3ǫ
− 2

3
Lµ + ǫ

(
−1

3
L2

µ − ζ2

3

)
+ ǫ2

(
−1

9
L3

µ − ζ2

3
Lµ +

2ζ3

9

)}
+ O(ǫ3) . (4.5)

In addition, the following comments on eqs. (4.2), (4.3) above are in order. First of

all, we have to supply the ǫ-expansion of the massive form factor including terms of order

ǫ2 at one loop, because of the singularity structure with 1/ǫ2-poles in massless one-loop

form factor. Since the O(ǫ2) term of the one-loop massive form factor is not available in

the literature we have calculated it following the setup of ref. [32]. Details are given in

appendix A. One can easily verify that this term produces a finite contribution at two

loops for an amplitude with nh external massive quarks, nl external massless quarks and

ng external gluons, which would be proportional to nlCF
2 + ngCF CA times the Born term.

Secondly, there is one important detail about the scheme for definition of coupling

constant and masses. We assume the pole-mass definition for the heavy quark mass m as

well as the standard MS coupling defined in eq. (3.5). Note that this definition for the

coupling differs from the one used in e.g. in ref. [32] (and other references on higher order

corrections for massive processes) where the coupling renormalization includes also the

factor Γ(1+ǫ) exp(ǫγE). For consistency with the massless calculations, we have performed

a finite renormalization of the result in ref. [32]. The necessary relation is given by

as

∣∣∣∣
ref. [32]

= as

{
1 + as

1

ǫ

(
β0 −

2

3

) (
Γ(1 + ǫ)

exp(−ǫγE)
− 1

)
+ O(a2

s )

}
, (4.6)

where we put the factor (4π)ǫ exp(−ǫγE) = 1 for simplicity and β0 = 11/3CA − 2/3nf . It

is easy to see that through two loops this amounts to the following finite correction (see

eq. (4.8) below for definitions of Fi) to the results presented in ref. [32]

F2

∣∣∣∣
MS

= F2

∣∣∣∣
ref. [32]

+ a2
s

β0

ǫ

(
ζ2

2
ǫ2 + O(ǫ3)

)
F1

∣∣∣∣
ref. [32]

. (4.7)

Finally we would like to elaborate on the relation between the factor Z
(m|0)
[q] and

the heavy quark perturbative fragmentation function we discussed in section 3 preced-

ing eq. (3.24). At one loop, the virtual contribution to the fragmentation function was

explicitly calculated in ref. [57] to all orders in ǫ. We present this result in appendix A

in a particular form prior to collinear factorization and one can easily verify by a direct

comparison that its expansion through O(ǫ2) coincides with the factor Z
(1)
[q] . Moreover,

ref. [57] also contains the purely virtual fermionic contributions (i.e. proportional to the

number of light flavors) at two loops. In terms of the usual renormalized coupling we have

found the former to be in agreement with the terms proportional to nf in the function Z
(2)
[q]

to all powers in ǫ appearing in eq. (4.3). This observation indicates that the factor Z
(m|0)
[q]

of eq. (2.8) indeed coincides with the virtual corrections to the collinearly unfactorized

perturbative fragmentation function and one may actually view the complete agreement

between all known terms of the two functions as a check on the derivation of Z
(m|0)
[q] .
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Although the latter object is not known to the level we have presented here for the

function Z
(m|0)
[q] the apparent coincidence allows for an interesting alternative interpretation

of that function by relating it to the field renormalization constant of a heavy quark in light

cone gauge n · A = 0. Indeed, in the approach of ref. [57] to calculate the fragmentation

function, the purely virtual corrections are nothing but insertions of self-energy type in

external on-shell legs in this particular gauge. Clearly, it will be very interesting to further

develop this line of reasoning.

4.2 The form factor F
Next, we want to perform the finite-order expansion and matching of eq. (3.12) for the

heavy quark form factor F . Subsequently, with all functions G, K and F determined we

will then be using eq. (3.12) for predictions of perturbative results at higher orders and

derive explicit results at three loops. To that end we perform the integrations in eq. (3.11)

after inserting the perturbative expansions of all quantities and simply evaluated resulting

integrals. Details on this procedure may be found in refs. [30, 41].

For the (ultraviolet) renormalized massive form factor with space-like virtuality q2 =

−Q2 < 0 and in terms of the renormalized coupling αs(µ
2) we have,

F
(

Q2

µ2
,
m2

µ2
, as(µ

2), ǫ

)
= 1 +

∞∑

i=1

(as)
i Fi . (4.8)

With the convention of eq. (3.4) for the expansion of A, G, K and C and setting the scale

to µ2 = m2, we find

F1 =
1

ǫ

{
1

2
A1L +

1

2
(G1 + K1)

}
− 1

4
A1L

2 − 1

2
G1L + C1 + ǫ

{
1

12
A1L

3 +
1

4
G1L

2

}
(4.9)

−ǫ2

{
1

48
A1L

4 +
1

12
G1L

3

}
+ O(ǫ3) ,

F2 =
1

ǫ2

{
1

8
A2

1L
2 +

1

4
A1(G1 + K1 − β0)L +

1

8
(G1 + K1)(G1 + K1 − 2β0)

}
(4.10)

+
1

ǫ

{
−1

8
A2

1L
3− 1

8
A1(3G1+K1)L

2+
1

4
(A2−G2

1−K1G1+2A1C1)L+
1

4
(G2+K2)

+
1

2
C1(G1+K1)

}
+

7

96
A2

1L
4+

1

24
A1(7G1+K1+2β0)L

3+
1

8
G1(2G1+K1+2β0)L

2

−1

4
(A2+A1C1)L

2− 1

2
(G2+G1C1)L+C2+ǫ

{
− 1

32
A2

1L
5− 1

96
A1(15G1+K1+6β0)L

4

− 1

24
G1(4G1+K1+6β0)L

3+
1

12
(2A2+A1C1)L

3+
1

4
(2G2+G1C1)L

2

}
+O(ǫ2) ,

F3 =
1

ǫ3

{
1

48
A3

1L
3+

1

16
A2

1(G1+K1−2β0)L
2+

1

16
A1(G1+K1)(G1+K1−4β0)L (4.11)

+
1

6
A1β

2
0L+

1

48
(G1+K1)(G1+K1−2β0)(G1+K1−4β0)

}
+

1

ǫ2

{
− 1

32
A3

1L
4

− 1

16
A2

1(2G1+K1−β0)L
3+

1

8
A1(A2+A1C1)L

2+
1

16
A1β0(3G1+K1)L

2
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− 1

32
A1(G1+K1)(5G1+K1)L

2+
1

24
A2(3G1+3K1−4β0)L+

1

24
A1(3G2+3K2−4β1)L

− 1

16
G1(G1+K1)(G1+K1−2β0)L+

1

4
A1C1(G1+K1−β0)L+

1

8
C1(G1+K1)

2

+
1

24
(G1+K1)(3G2+3K2−6β0C1−4β1)−

1

6
β0(G2+K2)

}
+

1

ǫ

{
5

192
A3

1L
5

+
1

192
A2

1(25G1+7K1+4β0)L
4+

1

96
A1(19G

2
1+K2

1 +14K1G1)L
3

+
1

48
A1β0(4G1+K1)L

3− 1

16
A1(3A2+2A1C1)L

3+
1

32
G1(G1+K1)(3G1+K1+2β0)L

2

−1

8
A2(2G1+K1)L

2− 1

16
A1(5G2+K2+6G1C1+2K1C1)L

2+
1

36
A1(32CA−135CF )L

+
1

12
(2A3+3A2C1+6A1C2)L+

1

8
(−3G1G2−2K1G2−K2G1)L− 1

4
G1C1(G1+K1)L

+
1

6
(G3+K3)+

1

4
C1(G2+K2)+

1

36
(G1+K1)(18C2+32CA−135CF )

}

− 1

64
A3

1L
6− 1

64
A2

1(6G1+K1+3β0)L
5+

1

96
A1(16A2+7A1C1)L

4− 1

384
A1(65G

2
1

+30K1G1+K2
1 +90β0G1+10β0K1+16β2

0 )L4+
1

48
A2(13G1+4K1+8β0)L

3

+
1

48
A1(19G2+K2+4β1)L

3+
1

24
A1C1(7G1+K1+2β0)L

3− 1

96
G1(9G

2
1+K2

1

+8K1G1+22β0G1+10β0K1+16β2
0)L3− 1

4
(A3+A2C1)L

2+
1

16
G1(K2+4β1)L

2

− 1

72
A1(18C2+32CA−135CF )L2+

1

16
G2(9G1+4K1+8β0)L

2

+
1

8
G1C1(2G1+K1+2β0)L

2− 1

2
(G3+G2C1+G1C2)L+C3+O(ǫ) ,

where again contributions arising from virtual heavy flavor lines are omitted (class hh) and

L = ln

(
Q2

m2

)
. (4.12)

In the quantities G3 and C3 in eq. (4.11) we have also absorbed all constant contributions

from the decoupling relation (3.13) at order a3
s . All these terms are independent of Lµ,ǫ and

can potentially include contributions of order ǫ at a3
s which we did not write out explicitly

in eq. (3.13). Results for Fi at a general scale µ2 6= m2 can be derived from eqs. (4.9)–(4.11)

by standard methods.2 They will be presented elsewhere.

Explicit results for Fi in eqs. (4.9)–(4.11) can be obtained with the help of the known

coefficients of the cusp anomalous dimension A(as) due to refs. [44, 45, 65],

A1 = 4CF , (4.13)

A2 = CF CA

(
268

9
− 8ζ2

)
+ nfCF

(
−40

9

)
, (4.14)

2We take the opportunity to point out a typographical mistake in eq. (62) of ref. [32]. The following term

CACF

11

6

 

3

2
−

1

2(1 − x)
−

1

(1 + x)

!

H(0, x) should actually read CACF

11

6

 

3

2
−

2

(1 − x)
−

1

(1 + x)

!

H(0, x).
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A3 = CF CA
2

(
490

3
− 1072

9
ζ2 +

88

3
ζ3 +

176

5
ζ2

2

)
(4.15)

+ nfCF CA

(
−836

27
+

160

9
ζ2 −

112

3
ζ3

)
+ nfCF

2

(
−110

3
+ 32ζ3

)
+ nf

2CF

(
−16

27

)
.

The respective coefficients for G(as) and K(as) read,

G1 = −6CF + ǫCF (−16 + 2ζ2) + ǫ2CF

(
−32 + 3ζ2 +

28

3
ζ3

)
(4.16)

+ǫ3CF

(
−64 + 8ζ2 + 14ζ3 +

47

10
ζ2

2

)
+ O

(
ǫ4

)
, (4.17)

G2 = CF
2(−3 + 24ζ2 − 48ζ3) + CF CA

(
−2545

27
− 44

3
ζ2 + 52ζ3

)
(4.18)

+nfCF

(
418

27
+

8

3
ζ2

)
+ O (ǫ) ,

K1 = 2CF , (4.19)

K2 = CF
2(3−24ζ2+48ζ3)+CF CA

(
373

27
+30ζ2−60ζ3

)
+nfCF

(
−10

27
−4ζ2

)
. (4.20)

Here we have included higher orders of ǫ in the anomalous dimensions, to ensure that

all large logarithms in m are actually generated entirely by the integrations over ξ and

λ in eq. (3.12). Although this is not a compelling choice it captures all structures in

the exponential, which are universally related to parton dynamics. This is contrary to

“minimal” versions proposed e.g. in ref. [24].

For the coefficients of the matching function C(as) we find,

C1 = CF (4 + ζ2)+ǫCF

(
8+

1

2
ζ2−

2

3
ζ3

)
+ǫ2CF

(
16+2ζ2−

1

3
ζ3+

9

20
ζ2

2

)
+O

(
ǫ3

)
, (4.21)

C2 = CF
2

(
30 + 55ζ2 − 36ζ3 − 48ζ2 ln 2 − 251

10
ζ2

2

)
(4.22)

+ CACF

(
−2387

27
+

71

36
ζ2 +

479

9
ζ3 + 24ζ2 ln 2 − 3

5
ζ2

2

)

+ nfCF

(
356

27
− 37

18
ζ2 −

38

9
ζ3

)
+ O (ǫ) .

Putting everything together, including the terms of order ǫ2 at one loop (see appendix A)

we arrive at the following results,

F1 = CF

{
1

ǫ
(2L − 2) − L2 + 3L − 4 + 2ζ2 + ǫ

(
1

3
L3 − 3

2
L2 + (8 − ζ2)L − 8 + 2ζ2 + 4ζ3

)

+ǫ2

(
− 1

12
L4 +

1

2
L3 −

(
4 − 1

2
ζ2

)
L2 +

(
16 − 3

2
ζ2 −

14

3
ζ3

)
L

−16 + 6ζ2 +
20

3
ζ3 +

14

5
ζ2

2

)}
+ O(ǫ3) , (4.23)

F2 = CF
2

{
1

ǫ2
(2L2 − 4L + 2) +

1

ǫ
(−2L3 + 8L2 − (14 − 4ζ2)L + 8 − 4ζ2) (4.24)
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+
7

6
L4 − 20

3
L3 +

(
55

2
− 4ζ2

)
L2 −

(
85

2
− 32ζ3

)
L + 46 + 39ζ2 − 44ζ3 − 48ζ2 ln 2

−118

5
ζ2

2 + ǫ

(
−1

2
L5 +

11

3
L4 −

(
137

6
− 8

3
ζ2

)
L3 +

(
153

2
− 112

3
ζ3

)
L2

)}

+CACF

{
1

ǫ2

(
−11

3
L +

11

3

)
+

1

ǫ

((
67

9
− 2ζ2

)
L − 49

9
+ 2ζ2 − 2ζ3

)
+

11

9
L3

−
(

233

18
− 2ζ2

)
L2 +

(
2545

54
+

22

3
ζ2 − 26ζ3

)
L − 1595

27
− 7

9
ζ2 +

134

3
ζ3 + 24ζ2 ln 2

−3

5
ζ2

2 + ǫ

(
−11

12
L4 +

(
565

54
− 4

3
ζ2

)
L3 −

(
3337

54
+

11

2
ζ2 − 26ζ3

)
L2

)}

+CF nf

{
1

ǫ2

(
2

3
L − 2

3

)
+

1

ǫ

(
−10

9
L +

10

9

)
− 2

9
L3 +

19

9
L2 −

(
209

27
+

4

3
ζ2

)
L +

212

27

−14

9
ζ2 −

8

3
ζ3 + ǫ

(
1

6
L4 − 47

27
L3 +

(
281

27
+ ζ2

)
L2

)}
+ O(L ǫ) + O(ǫ2) ,

F3 = CF
3

{
1

ǫ3

(
4

3
L3 − 4L2 + 4L − 4

3

)
+

1

ǫ2
(−2L4 + 10L3 − (22 − 4ζ2)L

2 (4.25)

+(22 − 8ζ2)L − 8 + 4ζ2) +
1

ǫ

(
5

3
L5 − 34

3
L4 +

(
137

3
− 6ζ2

)
L3 −

(
89 − 56ζ3

)
L2

+

(
129 + 88ζ2 − 136ζ3 − 96ζ2 ln 2 − 236

5
ζ2

2

)
L

)
− L6 +

17

2
L5 −

(
148

3
− 16

3
ζ2

)
L4

+

(
494

3
+

17

3
ζ2 −

268

3
ζ3

)
L3

}
+ CF

2CA

{
1

ǫ3

(
−22

3
L2 +

44

3
L − 22

3

)
+

1

ǫ2

(
11

3
L3

+

(
2

9
− 4ζ2

)
L2 −

(
1

9
− 2

3
ζ2 + 4ζ3

)
L − 34

9
+

10

3
ζ2 + 4ζ3

)
+

1

ǫ

(
11

9
L4

−
(

523

18
− 6ζ2

)
L3 +

(
6107

54
+

19

3
ζ2 − 50ζ3

)
L2 −

(
5396

27
− 5

3
ζ2 −

362

3
ζ3 − 48ζ2 ln 2

+
26

5
ζ2

2

)
L

)
− 11

4
L5 +

(
4289

108
− 16

3
ζ2

)
L4 −

(
6260

27
+

97

18
ζ2 −

232

3
ζ3

)
L3

}

+CF CA
2

{
1

ǫ3

(
242

27
L − 242

27

)
+

1

ǫ2

(
−

(
2086

81
− 44

9
ζ2

)
L +

1690

81
− 44

9
ζ2 +

44

9
ζ3

)

+
1

ǫ

((
245

9
− 536

27
ζ2 +

44

9
ζ3 +

88

15
ζ2

2

)
L

)
− 121

54
L4 +

(
2869

81
− 44

9
ζ2

)
L3

}

+CF
2nf

{
1

ǫ3

(
4

3
L2 − 8

3
L +

4

3

)
+

1

ǫ2

(
−2

3
L3 +

4

9
L2 +

(
10

9
+

4

3
ζ2

)
L − 8

9
− 4

3
ζ2

)

+
1

ǫ

(
−2

9
L4 +

41

9
L3 −

(
481

27
+

10

3
ζ2

)
L2 +

(
599

27
− 2

3
ζ2 +

8

3
ζ3

)
L

)
+

1

2
L5 − 355

54
L4

+

(
1016

27
+

29

9
ζ2

)
L3

}
+ CF CAnf

{
1

ǫ3

(
−88

27
L +

88

27

)
+

1

ǫ2

((
668

81
− 8

9
ζ2

)
L

−596

81
+

8

9
ζ2 −

8

9
ζ3

)
+

1

ǫ

(
−

(
418

81
− 80

27
ζ2 +

56

9
ζ3

)
L

)
+

22

27
L4 −

(
974

81
− 8

9
ζ2

)
L3

}

+CF nf
2

{
1

ǫ3

(
8

27
L − 8

27

)
+

1

ǫ2

(
−40

81
L +

40

81

)
+

1

ǫ

(
− 8

81
L

)
− 2

27
L4 +

76

81
L3

}
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+CF
2

{
1

ǫ

(
−15L

)}
+ CF CA

{
1

ǫ

(
32

9
L

)}
+ O(L0 ǫ−1) + O(L2 ǫ0) + O(ǫ) .

Further improvements on the accuracy of the three-loop prediction F3 require an extension

of the two-loop result F2 to order ǫ. We will return to this issue in a future publication.

Let us close this section with a few comments. First of all, it is clear we can obtain

a three-loop prediction, i.e. the coefficient Z
(3)
[q] in eq. (4.1) for the factor Z

(m|0)
[q] from the

exponentiated massive form factor in eq. (3.12) with the help of eq. (4.25) and the known

three-loop results in the massless case [28, 30]. Next, putting the discussion in a broader

perspective, we note that exponentiations similar to eq. (3.12) have also been studied

for electroweak interactions [63, 66] in massive gauge theories, where large logarithms

in the mass of the gauge boson appear. There, the resummation has been used as a

generating functional for Sudakov logarithms at higher orders. Of course, those details

of the exponentials which depend on the infrared sector of the theory are modified in

comparison to eq. (3.12). However, it is rather striking to observe that the coefficients for

G1 and G2 from our determination in eqs. (4.16) and (4.18) agree precisely with the values

for ζ(1) , ζ(2) in ref. [66] (up to an overall factor 1/2 due to different normalizations). In

both cases, the relevant coefficients control the single logarithm L at the respective order.

On top of this, it is even more striking, that the very same coefficients G1 and G2 from

eqs. (4.16), (4.18) for the form factor of a massive quark also coincide with the corresponding

results in massless case [28, 30] (up to an overall sign from different definitions). This

observation, which calls for an explanation, suggests a universality of the function G which

extends even to higher orders in ǫ, see e.g. eq. (4.16). It also offers the chance for a

conjecture about the coefficient of the single logarithm L for F3 in eq. (4.11) purely on the

basis of the corresponding massless result, provided, of course, that all necessary terms to

higher order in ǫ up to two loops are known.

The potential consequences of such a universal nature of the function G would be rather

interesting. For instance, in the massless case there exist additional relations between

the functions F [q] and F [g], i.e. the form factors for the vertices γ ∗qq and φgg. These

relations manifest themselves in underlying structures for the respective function G[i] (i =

q, g) [28, 61, 67] such that one can decompose the resummation coefficients G[i] in the

massless case according to

G
[i]
1 = 2

(
B

[i]
1 − δigβ0

)
+ f

[i]
1 + ǫG̃

[i]
1 , (4.26)

G
[i]
2 = 2

(
B

[i]
2 − 2δigβ1

)
+ f

[i]
2 + β0G̃

[i]
1 (ǫ=0) + ǫG̃

[i]
2 , (4.27)

G
[i]
3 = 2

(
B

[i]
3 − 3δigβ2

)
+ f

[i]
3 + β1G̃

[i]
1 (ǫ=0) + β0

(
G̃

[i]
2 (ǫ=0) − β0

˜̃
G

[i]
1 (ǫ=0)

)
+ ǫG̃

[i]
3 ,

(4.28)

where i = q, g and

F̃ = ǫ−1 [ F − F (ǫ=0) ] . (4.29)

Here (and only here), the functions B
[i]
n (not to be confused with the ones given in

eqs. (4.34)–(4.36)) denote the coefficients of term with δ(1 − x) in the n-loop diago-
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nal MS splitting functions P
(n−1)
ii [44, 45], while the universal functions f

[i]
n exhibit the

same maximally non-Abelian color structure as the A
[i]
n [43] up to the factor CA/CF , i.e.,

f
[g]
i = CA/CF f

[q]
i , see ref. [28] for details. With the help of eqs. (4.26)–(4.28) one could

translate the exponentiated form factor in eq. (3.11) for heavy quarks immediately e.g. to

the case of gluinos g̃ with mass mg̃, all resummation coefficients up to three loops being

known.

For completeness, let us finally mention also the functions H and S of eq. (3.21) as

well as B and h from eq. (3.24). The function H is already known through two loops

from refs. [56, 59], while the function S was evaluated in refs. [54, 55] to one loop. Using

eq. (3.22) and matching it to the fixed-order calculation for F2 we can extract in particular

the two-loop coefficient S2 from the term α2
s/ǫL

0. The explicit results for H(as) of the

massive form factor in eq. (3.22) read,

H1 = −4CF , (4.30)

H2 = CF CA

(
220

27
+ 8ζ2 − 36ζ3

)
+ nfCF

8

27
, (4.31)

and for S(as)

S1 = −4CF , (4.32)

S2 = CF CA

(
−1396

27
+ 8ζ2 + 20ζ3

)
+ nfCF

232

27
. (4.33)

In order to have a self-contained presentation, we also give the perturbative expansions of

the coefficients B(as),

B1 = −3CF , (4.34)

B2 = CF
2

(
−3

2
+ 12ζ2 − 24ζ3

)
+ CF CA

(
−3155

54
+

44

3
ζ2 + 40ζ3

)

+CF nf

(
247

27
− 8

3
ζ2

)
, (4.35)

B3 = CF
3

(
−29

2
− 18ζ2 − 68ζ3 −

288

5
ζ2

2 + 32ζ2ζ3 + 240ζ5

)

+CACF
2

(
−46 + 287ζ2 −

712

3
ζ3 −

272

5
ζ2

2 − 16ζ2ζ3 − 120ζ5

)

+CA
2CF

(
−599375

729
+

32126

81
ζ2 +

21032

27
ζ3 −

652

15
ζ2

2 − 176

3
ζ2ζ3 − 232ζ5

)

+CF
2nf

(
5501

54
− 50ζ2 +

32

9
ζ3

)
+ CF nf

2

(
−8714

729
+

232

27
ζ2 −

32

27
ζ3

)

+CACF nf

(
160906

729
− 9920

81
ζ2 −

776

9
ζ3 +

208

15
ζ2

2

)
, (4.36)

and for h(as)

h1 =−3CF +ǫCF (−16+2ζ2)+ǫ2CF

(
−32+3ζ2+

28

3
ζ3

)
+ǫ3CF

(
−64+8ζ2 (4.37)
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+14ζ3+
47

10
ζ2

2

)
+ǫ4CF

(
−128+16ζ2+

112

3
ζ3+

141

20
ζ2

2− 14

3
ζ2ζ3+

124

5
ζ5

)

+ǫ5CF

(
−256+32ζ2+

224

3
ζ3+

94

5
ζ2

2−7ζ2ζ3+
186

5
ζ5+

949

140
ζ2

3− 98

9
ζ3

2

)
,

h2 = CF
2

(
−3

2
+12ζ2−24ζ3

)
+CF CA

(
−215

6
− 88

3
ζ2+12ζ3

)
+nfCF

(
19

3
+

16

3
ζ2

)
(4.38)

+ǫCF
2

(
−1

2
+116ζ2−120ζ3−

176

5
ζ2

2

)
+ǫCF CA

(
−70165

162
− 575

9
ζ2+

520

3
ζ3

+
176

5
ζ2

2

)
+ǫnfCF

(
5813

81
+

74

9
ζ2−

16

3
ζ3

)
+ǫ2CF

2

(
109

4
+437ζ2−736ζ3−

432

5
ζ2

2

+112ζ2ζ3−48ζ5

)
+ǫ2CF CA

(
−1547797

972
− 7297

27
ζ2+

24958

27
ζ3+

653

6
ζ2

2− 356

3
ζ2ζ3

+204ζ5

)
+ǫ2nfCF

(
129389

486
+

850

27
ζ2−

1204

27
ζ3−

7

3
ζ2

2

)
+ǫ3CF

2

(
1287

8
+

2991

2
ζ2

−3614ζ3−508ζ2
2+104ζ2ζ3−72ζ5+

6864

35
ζ2

3+1072ζ3
2

)
+ǫ3CF CA

(
−31174909

5832

−155701

162
ζ2+

308810

81
ζ3+

100907

180
ζ2

2− 478

3
ζ2ζ3+840ζ5−

1618

35
ζ2

3− 2276

3
ζ3

2

)

+ǫ3nfCF

(
2628821

2916
+

8405

81
ζ2−

16340

81
ζ3−

1873

90
ζ2

2− 44

3
ζ2ζ3−48ζ5

)
,

h3 = CF
3

(
−29

2
−18ζ2−68ζ3−

288

5
ζ2

2+32ζ2ζ3+240ζ5

)
+CF

2CA

(
−94

3
(4.39)

+
1235

3
ζ2−

2296

3
ζ3+

856

15
ζ2

2−16ζ2ζ3−120ζ5

)
+CF CA

2

(
−16540

27
− 22286

27
ζ2

+
1544

3
ζ3+

1592

15
ζ2

2−40ζ5

)
+nfCF

2

(
239

6
− 146

3
ζ2+

400

3
ζ3−

208

15
ζ2

2

)

+nfCF CA

(
5516

27
+

7216

27
ζ2−

224

3
ζ3−

296

15
ζ2

2

)
+nf

2CF

(
−406

27
− 536

27
ζ2

)
,

where the function B is known to three loops from refs. [37, 39, 53, 62], while the function

h has been derived by matching eq. (3.24) to the respective fixed-order calculation starting

from the single pole terms αn
s /ǫ.

5. Applications

Here we want to demonstrate how the previous considerations can be applied to derive

the structure of the singularities and all large Sudakov logarithms in higher order QCD

corrections to partonic scattering processes. Let us start with the general 2 → n scattering

processes of partons pi in eq. (2.1) and consider eq. (2.7) in a perturbative expansion in

αs. We want to present the explicit relations between corresponding amplitudes with and

without parton masses {mi}, in our notation |Mp,{mi}〉 and |Mp,{mi=0}〉. Throughout this
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section, we consider (ultraviolet) renormalized quantities and we define

|Mp〉 =
∞∑

i=0

(as)
i |M(i)

p 〉 , (5.1)

and any overall powers of as typical say, for jet cross-sections at hadron colliders, have been

absorbed in the notation. We can then express eq. (2.7) for a general process (2.1) in an

expansion to second order in αs as,

|M(0)
p,{mi}

〉 = |M(0)
p,{mi=0}〉 , (5.2)

|M(1)
p,{mi}

〉 =
1

2

∑

i∈ {all legs}

Z
(1)
[i] |M

(0)
p,{mi=0}〉+|M(1)

p,{mi=0}〉 , (5.3)

|M(2)
p,{mi}

〉 =
1

2

∑

i∈ {all legs}

(
Z

(2)
[i] − 1

4

(
Z

(1)
[i]

)2
)
|M(0)

p,{mi=0}〉 (5.4)

+
1

2

∑

i∈ {all legs}

Z
(1)
[i] |M

(1)
p,{mi=0}〉 + |M(2)

p,{mi=0}〉 ,

which holds in the small mass limit up to terms suppressed with the parton masses m2
i . Of

course, in the case of massless external lines the respective higher order corrections to the

Z-factors in eqs. (5.3), (5.4) mostly vanish. Also recall that the amplitude |Mp〉 is a vector

in color space whereas the Z-factors from eq. (2.8) are in this respect simply functions.

Non-trivial color dependence of singularities on the other hand typically arises from soft

gluon exchange and therefore carries over directly from underlying massless hard scattering

amplitude |Mp,{mi=0}〉. Finally, it has been emphasized already in the previous discus-

sions, that eqs. (5.2)–(5.4) require to organize the contributions to the massive amplitude

|Mp,{mi}〉 in terms of flavor classes, i.e. whether or not the heavy parton lines are external.

An analogous distinction holds for the gluon factor Z
(m|0)
[g] when heavy quarks are included

for instance as self-energy corrections to the external gluons, see eqs. (5.15), (5.16) below.

The explicit results for Z
(1)
[q] and Z

(2)
[q] in eqs. (4.2), (4.3) hold for the cases ll, hl.

In the light of eqs. (5.2)–(5.4) let us briefly come back to the relation between the

factor Z(m|0) and the perturbative fragmentation functions [19]. Although this connection

may come at first as a surprise, the two functions are actually intimately related in the

context of QCD amplitudes. First of all, both are process-independent. Secondly, one

may compare both approaches in a computation of a one-particle inclusive cross-section

of a massive parton based on an amplitude such as eq. (2.2). The result takes the form

of a convolution of massless cross-section times the perturbative fragmentation function.

(We refer the reader to the discussion in refs. [57, 68] for complete details on this point).

Alternatively, we can use eq. (2.7) to relate the massive amplitude to the massive one.

As is clear e.g. from the perturbative expansion in eqs. (5.2)–(5.4) the proportionality

factor between |Mp,{mi}〉 and |Mp,{mi=0}〉 is independent of the kinematics and is also

not affected by the subsequent phase-space integration. Furthermore, this holds separately

for virtual and the corresponding real radiation contributions. Thus, our simple direct
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relation between massive amplitudes and their massless counterpart in eq. (2.7) represents

the appropriate generalization of the formalism of Mele and Nason [19] at the amplitude

level.

In an equivalent formulation, we can also consider the perturbative expansion of

eq. (2.4). To that end, we repeat the decomposition of the amplitude |Mp,{mi}〉 from

eqs. (5.2)–(5.4) up to two loops in terms of products of the functions J [p], S [p] and H[p].

|M(0)
p,{mi}

〉 = |H(0)
p 〉 , (5.5)

|M(1)
p,{mi}

〉 =
1

2

∑

i∈ {all legs}

F [i]
1 |H(0)

p 〉 + S [p]
1 |H(0)

p 〉 + |H(1)
p 〉 , (5.6)

|M(2)
p,{mi}

〉 =
1

2

∑

i∈ {all legs}

(
F [i]

2 − 1

4

(
F [i]

1

)2
+

1

2
F [i]

1 S [p]
1

)
|H(0)

p 〉 (5.7)

+
1

2

∑

i∈ {all legs}

F [i]
1 |H(1)

p 〉 + S [p]
2 |H(0)

p 〉 + S [p]
1 |H(1)

p 〉 + |H(2)
p 〉 ,

where the perturbative expansions of S [p] and |Hp〉 are defined analogous to eq. (5.1). Of

course, the same qualifications from section 3 about the distinct flavor classes contributing

to the massive form factor F also apply here. Now, in the factorization ansatz of eq. (2.4)

the function |Hp〉 is a vector and S [p] is a matrix in color space. Thus, their products in

eqs. (5.6), (5.7) are in the sense of matrix multiplication and all dependence on singular

color correlations rests entirely in the function S [p].

As we remarked above (and as is well known in the literature [11, 24, 46]) the matrix S [p]

is subject of a renormalization group equation which allows for an all-order exponentiation

of the soft contributions. The solution for S [p] results in a path-ordered exponential due

to mixing of the color structures under soft gluon exchange,

S [p]

(
{ki},

Q2

µ2
, αs(µ

2), ǫ

)
= Pexp


−

1

2

Q2∫

0

dk2

k2
Γ[p]

(
ā(k2, ǫ)

)

 , (5.8)

where P denotes the path ordering. Here, Γ[p] is the so-called soft anomalous dimension,

which is a matrix in the space of color tensors (see eqs. (2.2), (2.4)). Of course, the running

coupling ᾱs in the argument of Γ[p] is to be taken in d dimensions. For 2 → n hard scattering

processes with massless partons Γ[p] is currently known up to two loops [24, 66, 69, 70] and

to one loop results for reactions with massive partons [71, 72]. In the latter case, one can

show in particular, that the soft anomalous dimension Γ[p] has a smooth limit for m → 0.

To summarize, we have given in eqs. (5.2)–(5.4) and (5.5)–(5.7) two equivalent for-

mulations. Both allow to obtain all large logarithms of Sudakov type together with the

dimensionally regulated soft poles in ǫ and any given QCD amplitude for 2 → n scattering

with parton masses {mi} can be constructed by either method. In particular eq. (5.8) can

be used to derive explicit expressions for S [p]
1 and S [p]

2 in eqs. (5.5)–(5.7) in terms of the

perturbative expansion for the soft anomalous dimension Γ[p]. Most of the other ingredients

are explicitly presented in this paper.
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Next, let us discuss the consistency of eq. (2.7) with the results of ref. [2]. In that

reference the structure of both soft and collinear singularities for any one-loop amplitude

was presented for arbitrary values of parton masses. In the approach of ref. [2] any one-loop

n-parton amplitude can be written as:

|M(1)
p 〉 = I(m)

n (ǫ, µ2, {m2
i }) |M(0)

p 〉 + |M(1),fin
p 〉 , (5.9)

where |M(0)
p 〉 is the Born amplitude for the process under consideration. The amplitude

|M(1),fin
p 〉 contains only one-loop corrections which are finite in the limits mi → 0 and

ǫ → 0. In the following we will adapt the results of ref. [2] to the MS coupling evaluated

at a renormalization scale µ. We will also assume conventional dimensional regularization

for simplicity. In the small mass limit the operator I
(m)
n then takes the form (recall that

all non-vanishing masses mj are assumed to have a common value m):

I(m)
n (ǫ, µ2, {m2

i }) =
exp(ǫγE)

Γ(1 − ǫ)

{
n∑

j 6=k=1

Tj · Tk Vjk(sjk;mj ,mk; ǫ) −
n∑

j=1

Γj(µ,mj; ǫ) + . . .

}
,

(5.10)

where Tk are the generators of the gauge group and sjk the kinematical invariants. The dots

denote mass-independent terms and the functions Vjk are associated to pairs of external

partons. One has three possible combinations in each pair of partons with two, one or none

of them being massive. Thus, three separate functions Vjk are needed for these three cases.

Similarly, the functions Γj are different, depending on whether the parton j is massive or

massless, i.e. quark, gluon, gluino and so on.

For the sake of comparison with the Z-factor in eq. (2.8) we write Vjk and Γj as

V(2 massive partons)
jk = 2∆V + V(0)

jk (5.11)

V(1 massive parton)
jk = ∆V + V(0)

jk (5.12)

Γ(m)
q = ∆q + Γ(0)

q (5.13)

Γ(m)
g = nh ∆g + Γ(0)

g , (5.14)

where the functions ∆V ,∆q and ∆g are independent of the invariants sjk, i.e. they are the

same for each external parton (or pair of external partons).3 Therefore one can apply the

color algebra to express the sum over the products of color generators multiplying these

functions directly in terms of the corresponding Casimir operators (see ref. [2]). In this

way, all process dependent factors are separated into functions that are independent of the

mass. All mass dependence on the other hand enters only in a process-independent way.

Combining the above results one gets

I(m)
n (ǫ, µ2,m2) = I(0)

n (ǫ, µ2) +

n
h∑

j=1

fq(ǫ, µ
2,m2) +

ng∑

j=1

nhfg(ǫ, µ
2,m2) , (5.15)

where I
(0)
n is the appropriate operator for purely massless amplitudes [10] evaluated for

nf = nl + nh light flavors. The function fq is given by one half of the function Z
(1)
[q] (and of

3The superscripts (m) and (0) refer to quantities evaluated in the massive, respectively massless case.
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course restricted to constant terms at order ǫ0) presented in eq. (4.2). For the function fg

we find

fg(ǫ, µ
2,m2) = −1

3

(
1

ǫ
+ ln

(
µ2

m2

))
, (5.16)

which, when restricted to constant terms at order ǫ0, is related to the function Z
(1)
[g] in

eq. (4.5) through nhfg(ǫ, µ
2,m2) = Z

(1)
[g] /2.

Finally, we briefly comment on Abelian gauge theories with fermion masses like Quan-

tum Electrodynamics (QED). These provide other prominent examples for the considera-

tions of the present article. For instance one arrives at QED (with massive electrons) after

the usual identification of the color factors, CF = 1, CA = 0 and Tf = 1 instead of our

QCD convention Tf nf = nf/2 There, the complete calculation of the two-loop radiative

photonic corrections in QED to Bhabha scattering in the small mass limit have already

been performed [20 – 22]. This included also a complete matching at two loops, i.e. the

computation of the constant terms which are not logarithmically enhanced. The latter

also required the constant terms from the massless, dimensionally regularized amplitudes

of ref. [73]. An extension of the results of the present article (and the exponentiation in

particular) in this direction is a possibility which we leave for a future publication.

6. Summary

In this article we have presented a first discussion of the singular behavior of on-shell QCD

amplitudes with massive particles beyond one loop. We have performed a systematic study

of both, the soft singularities typically showing up as poles in ǫ in dimensional regularization

and the structure of the large Sudakov (or quasi-collinear) type logarithms of the parton

masses, which become dominant in the high energy limit. Working in the small mass limit,

we have consistently omitted power corrections in the parton masses.

We have presented in eqs. (2.4) and (2.7) a general framework for the factorization

of n-parton amplitudes in QCD which incorporates massive partons. The factorization

formula, which we have organized in terms of flavor classes, is universal and is valid for any

amplitude. We have emphasized the strong similarities between scattering amplitudes with

massless and massive partons in the limit where all parton masses are much smaller than

the relevant kinematic invariants of the scattering process. In this regime, the factorization

formula can be used to directly obtain (apart from vanishing corrections when the masses

tend to zero) the massive amplitude from the corresponding massless amplitude, without

explicitly computing the former. To that end we have introduced the factor Z(m|0) as

the building block of the proportionality. In the case of heavy quarks we have linked

Z
(m|0)
[q] to the virtual corrections in the formalism of perturbative fragmentation function

thus generalizing the approach of ref. [19] to the level of amplitudes. Finally, we have

explicitly illustrated the predictive power of the factorization ansatz for examples from

2 → n scattering processes in QCD.

Improved insight into the structure underlying the factorization of amplitudes in the

soft and (quasi)-collinear momentum regions have enabled us to derive an exponential (3.12)
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for the form factor of heavy quarks. We have used this new result to predict the fixed-

order expansion of the massive form factor to up three loops and, in comparing massless

and massive amplitudes, we have observed an apparent universality of the respective re-

summation coefficients G which we find worth mentioning. Furthermore, on the basis of

eq. (2.4) and the exponentiations for the functions J [p] and S [p] we have shown how to

extend our predictions to the perturbative expansion of general n-parton amplitudes in

QCD with massive partons.

Thus, the results of the present paper such as eq. (2.8) can be useful to either check

explicit evaluations of amplitudes at higher loops or make predictions to higher orders in

perturbation theory. The material presented can also help to organize calculations, say

at NNLO, in terms of divergent, but analytically computable, parts and finite remainders

that can be integrated numerically. In the context of general calculations for differential

observables with massive partons at NNLO our factorization formula may also facilitate

the combination of the respective tree-level and one-loop real emission amplitudes with the

virtual contributions in a process independent manner.

We will return to these issues as well as potential connections to threshold resummation

for processes with massive partons in future work.
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A. The complete form factor F at one loop

Here, we give the complete result for one-loop QCD corrections to order ǫ2 to the form factor

of a heavy quark at the scale µ2 = m2 in terms of harmonic polylogarithms Hm1,...,mw(x),

see also section 3 and eq. (4.8) for definitions. The variable x with 0 ≤ x ≤ 1 for space-like

q2 = −Q2 < 0 is given by

x =

√
Q2 + 4m2 −

√
Q2

√
Q2 + 4m2 +

√
Q2

. (A.1)

For F1 we find4

F1 =
1

ǫ
CF

{
−2+2

(
1− 1

1−x
− 1

1+x

)
H0

}
+CF

{
−4+

(
3− 4

1−x
− 2

1+x

)
H0 (A.2)

4We thank J. Gluza for providing us with the integral SE2l2m of refs. [12, 13] to order ǫ3, see also

http://www-zeuthen.desy.de/theory/research/bhabha/.
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+2

(
1− 1

1−x
− 1

1+x

)
(H0,0−2H−1,0−ζ2)

}
+ǫCF

{
−8+

(
1− 1

1−x
− 1

1+x

)
(8H0

+8H−1,−1,0−4ζ3+4H−1ζ2−4H−1,0,0−H0ζ2−4H0,−1,0+2H0,0,0)

+

(
3− 4

1−x
− 2

1+x

)
(H0,0−2H−1,0)−2

(
2− 2

1−x
− 1

1+x

)
ζ2

}
+ǫ2CF

{
−16

−4

3

(
4− 6

1−x
− 3

1+x

)
ζ3+

(
3− 4

1−x
− 2

1+x

)(
2H−1ζ2+4H−1,−1,0−2H−1,0,0

−1

2
H0ζ2−2H0,−1,0+H0,0,0

)
+

(
1− 1

1−x
− 1

1+x

)(
−14

5
ζ2

2+8H−1ζ3−8H−1,−1ζ2

−16H−1,−1,−1,0+8H−1,−1,0,0−16H−1,0+2H−1,0ζ2+8H−1,0,−1,0−4H−1,0,0,0+16H0

−14

3
H0ζ3+4H0,−1ζ2+8H0,−1,−1,0 − 4H0,−1,0,0+8H0,0−H0,0ζ2−4H0,0,−1,0

+2H0,0,0,0

)
−2

(
5− 4

1−x
− 4

1+x

)
ζ2

}
.

In eq. (A.2) all harmonic polylogarithms Hm1,...,mw(x), mj = 0,±1 are understood to be

of argument x. For the rest, our notation follows ref. [76] to which the reader is referred

for a detailed discussion.

Next we present the one-loop result for the virtual contribution to the perturbative

fragmentation function to all orders in ǫ [57]:

Dvirt
1 (z) = asCF

2ǫ2 − 3ǫ + 2

(1 − 2ǫ)ǫ
exp(ǫγE)Γ(ǫ)

(
µ2

m2

)ǫ

δ(1 − z) . (A.3)

As one can easily verify, the expansion of the coefficient of the delta-function in ǫ

coincides to all known powers with the factor Z
(1)
[q] in eq. (4.2), which suggests that eq. (A.3)

is indeed the proper generalization to all orders in ǫ.

Finally, we discuss the derivation of the one-loop heavy quark insertion in the tree-level

gluon form factor. It is clear that this diagram coincides with the one loop contribution to

Z
(1)
[g] . We find it particularly convenient to evaluate this diagram in a physical light-cone

gauge. Following the procedure outlined in refs. [57, 58] we obtain to all orders in ǫ:

Z
(1)
[g] = asnh

(
−2

3

)
exp(ǫγE)Γ(ǫ)

(
µ2

m2

)ǫ

. (A.4)

Upon expansion in ǫ eq. (4.5) is derived.
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